310 research outputs found

    NERVE CONDUCTION VELOCITY INVESTIGATION IN ATHLETES WITH TRAINED LOWER EXTRAMITY FOR WELL·CONTROLLlNG MOVEMENT

    Get PDF
    Reaction, coordination and speed ability are essential for success in a variety of sports. Nerve conduction velocity (NCV) is related to all of these abilities. Previous studies had investigated power and endurance type athletes, but there is less research in athletes who are skilled in coordinated lower extremity movements requiring more neural adaptation for nerve conduction velocity after specific exercise training. The purpose of this study is to investigate nerve conduction velocity of soccer, sanshou players and untrained subjects. Results show that NCV was significantly different among the 3 groups (p < .05) for the femoral and tibal nerves. For both femoral and tibial nerve.§, results showed that the soccer players had significantly faster NCV than the other groups (p < .05). According to the results, faster NCV adaptation from long term training in soccer players may be relate to their movement requirement of changing their movement direction quickly and skillfully

    POOR FORCE CONTROL PERFORMANCE AND UNVARIED EMG PATTERN AFTER AGONIST MUSCLE FATIGUE IN HUMANS

    Get PDF
    Ballistic and accurately control of a targeted fast contraction relies on phasic activations of the agonist and antagonist muscles. The purpose of the study was to investigate the effect of tibialis anterior (TA) fatigue on the systematic bias and the consistence of the net dorsiflexion torque generation and the controlling pattern of the agonist-antagonist muscles. Ten subjects were tested twice with a week apart. Fast and slow dorsiflexion at 40%-MVG were measured before and after fatigue of the TA by voluntary isometric dorsiflexions. The EMG of the TA and soleus (Sol) were recorded. The results revealed that more post-fatigue increment of the systematic error was in the fast dorsiflexions, random error increment were similar in both speeds of isometric dorsiflexions, the cocontraction ratio increased after fatigue only in the slow dorsiflexions. Our results suggested that precision of the fast targeted isometric contractions was reduced after fatigue because of unvaried agonist-antagonist control strategy

    Proteomic profiling reveals α1-antitrypsin, α1-microglobulin, and clusterin as preeclampsia-related serum proteins in pregnant women

    Get PDF
    AbstractObjectivePreeclampsia is a major cause of mortality in pregnant women but the underlying mechanism remains unclear to date. In this study, we attempted to identify candidate proteins that might be associated with preeclampsia in pregnant women by means of proteomics tools.Materials and methodsDifferentially expressed proteins in serum samples obtained from pregnant women with severe preeclampsia (n = 8) and control participants (n = 8) were identified using two-dimensional gel electrophoresis (2-DE) followed by peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Additional serum samples from 50 normal and 41 pregnant women with severe preeclampsia were analyzed by immunoassay for validation.ResultsTen protein spots were found to be upregulated significantly in women with severe preeclampsia. These protein spots had the peptide mass fingerprints matched to α1-antitrypsin, α1-microglobulin, clusterin, and haptoglobin. Immunoassays in an independent series of serum samples showed that serum α1-antitrypsin, α1-microglobulin, and clusterin levels of severe preeclampsia patients (n = 41) were significantly higher than those in the normal participants (n = 50; α1-antitrypsin 295.95 ± 50.94 mg/dL vs. 259.31 ± 33.90 mg/dL, p = 0.02; α1-microglobulin 0.029 ± 0.004 mg/mL vs. 0.020 ± 0.004 mg/mL, p < 0.0001; clusterin 77.6 ± 16.15 Όg/dL vs. 67.6 ± 15.87 Όg/dL, p < 0.05).ConclusionIdentification of these proteins by proteomics analysis enables further understanding of the pathophysiology of preeclampsia. Further studies are warranted to investigate the role of these biomarkers in prediction of this disease

    Soluble Form of Receptor for Advanced Glycation End Products Is Associated with Obesity and Metabolic Syndrome in Adolescents

    Get PDF
    The aim of this cross-sectional study was to investigate the relationship between soluble form of receptor for advanced glycation end products (sRAGE), obesity, and metabolic syndrome (MetS) in adolescents. A total of 522 male and 561 female adolescents were enrolled into the final analyses. Anthropometric parameters, blood pressure, blood biochemistry, fasting insulin, and plasma sRAGE levels were measured. In males, sRAGE was significantly and inversely correlated with waist circumference (WC), body mass index (BMI), systolic blood pressure, triglyceride (TG), low density lipoprotein cholesterol (LDL-C), and homeostasis model assessment-insulin resistance (HOMA-IR). Only WC and BMI were significantly and inversely correlated with sRAGE in females. Using linear regression analysis adjusting for age and gender, significant association was found between sRAGE and WC, BMI, TG, LDL-C, and HOMA-IR in adolescents of either gender (P<0.05). This association was abolished when further adjusting BMI. In addition, sRAGE was significantly and inversely correlated with the increasing number of components of MetS in males (P for trend = 0.006) but not in females (P for trend = 0.422). In conclusion, plasma sRAGE is associated with obesity and MetS among adolescents. BMI may be the most important determinant of sRAGE levels in adolescents

    Direct Radiofrequency Application Improves Pain and Gait in Collagenase-Induced Acute Achilles Tendon Injury

    Get PDF
    Radiofrequency (RF) is often used as a supplementary and alternative method to alleviate pain for chronic tendinopathy. Whether or how it would work for acute tendon injury is not addressed in the literatures. Through detailed pain and gait monitoring, we hypothesized that collagenase-induce acute tendinopathy model may be able to answer these questions. Gait parameters, including time, distance, and range of motion, were recorded and analyzed using a walking track equipped with a video-based system. Expression of substance P (SP), calcitonin gene related peptide (CGRP), and galanin were used as pain markers. Beta-III tubulin and Masson trichrome staining were used as to evaluate nerve sprouting, matrix tension, and degeneration in the tendon. Of fourteen analyzed parameters, RF significantly improved stance phase, step length, preswing, and intermediary toe-spread of gait. Improved gait related to the expression of substance P, CGRP, and reduced nerve fiber sprouting and matrix tension, but not galanin. The study indicates that direct RF application may be a valuable approach to improve gait and pain in acute tendon injury. Altered gait parameters may be used as references to evaluate therapeutic outcomes of RF or other treatment plan for tendinopathy

    Induction chemotherapy with dose-modified docetaxel, cisplatin, and 5-fluorouracil in Asian patients with borderline resectable or unresectable head and neck cancer

    Get PDF
    BackgroundSignificant ethnic differences in susceptibility to the effects of chemotherapy exist. Here, we retrospectively analyzed the safety and efficacy of induction chemotherapy (ICT) with dose-modified docetaxel, cisplatin, and 5-fluorouracil (TPF) in Asian patients with borderline resectable or unresectable head and neck squamous cell carcinoma (HNSCC).MethodsBased on the incidence of adverse events that occurred during daily practice, TPF90 (90% of the original TPF dosage; docetaxel 67.5 mg/m2 on Day 1, cisplatin 67.5 mg/m2 on Day 1, and 5-fluorouracil 675 mg/m2 on Days 1–5) was used for HNSCC patients who were scheduled to receive ICT TPF.ResultsBetween March 2011 and May 2014, 52 consecutive patients with borderline resectable or unresectable HNSCC were treated with ICT TPF90 followed by concurrent chemoradiotherapy. Forty-four patients (84.6%) received at least three cycles of ICT TPF90. The most commonly observed Grade 3–4 adverse events included neutropenia (35%), anemia (25%), stomatitis (35%), diarrhea (16%), and infections (13.5%). In an intention-to-treat analysis, the complete and partial response rates after ICT TPF90 were 13.5% and 59.6%, respectively. The complete and partial response rates following radiotherapy and salvage surgery were 42.3% and 25.0%, respectively. The estimated 3-year overall survival and progression-free survival rates were 41% [95% confidence interval (CI): 25–56%] and 23% (95% CI: 10–39%), respectively. The observed median overall survival and progression-free survival were 21.0 months (95% CI: 13.3–28.7 months) and 16.0 months (95% CI: 10.7–21.3 months), respectively.ConclusionTPF90 is a suitable option for Asian patients with borderline resectable or unresectable HNSCC who are scheduled for ICT

    The Estimation of First-Phase Insulin Secretion by Using Components of the Metabolic Syndrome in a Chinese Population

    Get PDF
    Aims. There are two phases of insulin secretion, the first (FPIS) and second phase (SPIS). In this study, we built equations to predict FPIS with metabolic syndrome (MetS) components and fasting plasma insulin (FPI). Methods. Totally, 186 participants were enrolled. 75% of participants were randomly selected as the study group to build equations. The remaining 25% of participants were selected as the external validation group. All participants received a frequently sampled intravenous glucose tolerance test, and acute insulin response after the glucose load (AIRg) was obtained. The AIRg was considered as FPIS. Results. When MetS components were only used, the following equation was built: log (FPIS) = 1.477 − 0.119 × fasting plasma glucose (FPG) + 0.079 × body mass index (BMI) − 0.523 × high-density lipoprotein cholesterol (HDL-C). After FPI was added, the second equation was formulated: log (FPIS) = 1.532 − 0.127 × FPG + 0.059 × BMI - 0.511 × HDL-C + 0.375 × log (FPI), which provided a better accuracy than the first one. Conclusions. Using MetS components, the FPIS could be estimated accurately. After adding FPI into the equation, the predictive power increased further. We hope that these equations could be widely used in daily practice

    Twisting of the DNA-binding surface by a ÎČ-strand-bearing proline modulates DNA gyrase activity

    Get PDF
    DNA gyrase is the only topoisomerase capable of introducing (−) supercoils into relaxed DNA. The C-terminal domain of the gyrase A subunit (GyrA-CTD) and the presence of a gyrase-specific ‘GyrA-box’ motif within this domain are essential for this unique (−) supercoiling activity by allowing gyrase to wrap DNA around itself. Here we report the crystal structure of Xanthomonas campestris GyrA-CTD and provide the first view of a canonical GyrA-box motif. This structure resembles the GyrA-box-disordered Escherichia coli GyrA-CTD, both adopting a non-planar ÎČ-pinwheel fold composed of six seemingly spirally arranged ÎČ-sheet blades. Interestingly, structural analysis revealed that the non-planar architecture mainly stems from the tilted packing seen between blades 1 and 2, with the packing geometry likely being defined by a conserved and unusual ÎČ-strand-bearing proline. Consequently, the GyrA-box-containing blade 1 is placed at an angled spatial position relative to the other DNA-binding blades, and an abrupt bend is introduced into the otherwise flat DNA-binding surface. Mutagenesis studies support that the proline-induced structural twist contributes directly to gyrase’s (−) supercoiling activity. To our knowledge, this is the first demonstration that a ÎČ-strand-bearing proline may impact protein function. Potential relevance of ÎČ-strand-bearing proline to disease phenylketonuria is also noted
    • 

    corecore